Intradiscal transplantation of synovial mesenchymal stem cells prevents intervertebral disc degeneration through suppression of matrix metalloproteinase-related genes in nucleus pulposus cells in rabbits

نویسندگان

  • Takashi Miyamoto
  • Takeshi Muneta
  • Takashi Tabuchi
  • Kenji Matsumoto
  • Hirohisa Saito
  • Kunikazu Tsuji
  • Ichiro Sekiya
چکیده

INTRODUCTION Synovial mesenchymal stem cells (MSCs) have high proliferative and chondrogenic potentials, and MSCs transplanted into the articular cartilage defect produce abundant extracellular matrix. Because of similarities between the articular cartilage and the intervertebral disc cartilage, synovial MSCs are a potential cell source for disc regeneration. Here, we examined the effect of intradiscal transplantation of synovial MSCs after aspiration of nucleus pulposus in rabbits. METHODS The nucleus pulposus tissues of rabbit's intervertebral discs were aspirated to induce disc degeneration, and allogenic synovial MSCs were transplanted. At 2, 4, 6, 8, 16, 24 weeks postoperatively, we evaluated with imaging analyses such as X-ray and magnetic resonance imaging (MRI), and histological analysis. To investigate interaction between synovial MSCs and nucleus pulposus cells, human synovial MSCs and rat nucleus pulposus cells were co-cultured, and species specific microarray were performed. RESULTS The existence of transplanted cells labeled with DiI or derived from green fluorescent protein (GFP)-expressing transgenic rabbits was confirmed up until 24 weeks. X-ray analyses demonstrated that intervertebral disc height in the MSC group remained higher than that in the degeneration group. T2 weighted MR imaging showed higher signal intensity of nucleus pulposus in the MSC group. Immunohistological analyses revealed higher expression of type II collagen around nucleus pulposus cells in the MSC group compared with even that of the normal group. In co-culture of rat nucleus pulposus cells and human synovial MSCs, species specific microarray revealed that gene profiles of nucleus pulposus were altered markedly with suppression of genes relating matrix degradative enzymes and inflammatory cytokines. CONCLUSIONS Synovial MSCs injected into the nucleus pulposus space promoted synthesis of the remaining nucleus pulposus cells to type II collagen and inhibition of expressions of degradative enzymes and inflammatory cytokines, resulting in maintaining the structure of the intervertebral disc being maintained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Degenerative Disc Disease: A Review of Cell Technologies and Stem Cell Therapy

Background & Aim: Low back pain is broadly documented as one of the most widespread pathologies in the advanced domain. Although the reasons of low back pain are uncountable, it has been meaningfully related to intervertebral disc degeneration. Present therapies for Intervertebral Disc (IVD) degeneration such as physical therapy and spinal fusion reduce symptoms' severity, but do not treat the ...

متن کامل

TGF-βl Suppresses Inflammation in Cell Therapy for Intervertebral Disc Degeneration

Recent studies suggest that cell therapy may be an effective way to repair intervertebral disc degeneration. As a strong immune suppressor, TGF-β1 has been shown to inhibit inflammation respond effectively. The objective of this study was to explore the effects of TGF-β1 during bone marrow mesenchymal stem cells-based therapy for disc degeneration. In vitro assays demonstrated that co-culturing...

متن کامل

Effect of the mixture of bone marrow mesenchymal stromal cells and annulus fibrosus cells in repairing the degenerative discs of rabbits.

The aims of this study were to investigate the effect of a mixture of bone marrow mesenchymal stem cells (BMSCs) and annulus fibrosus cells (AFCs) in repairing the degenerative discs of rabbits, and to provide an experimental basis for its clinical application. BMSCs from rabbits were cultured in vitro and mixed with AFCs. The animal model of degenerative intervertebral disc was built by aspira...

متن کامل

Influence of simvastatin on the biological behavior of nucleus pulposus-derived mesenchymal stem cells

Objective(s): This research is to study the influences of different concentrations of simvastatin on the biological activities of nucleus pulposus-derived mesenchymal stem cells (NPMSC).Materials and Methods: NPMSC were cultured with different concentrations of simvastatin (0, 0.01, 0.1, and 1 μM) and assessed to determine the possible e...

متن کامل

سلول درمانی در بازسازی دیسک بین مهره‌ای: مقاله مروری

Intervertebral disks (IVD) acts as shock absorber between each of the vertebrae in the spinal column by keeping the vertebrae separated when the shock caused by the action. They also serve to protect the nerves that run down the middle of the spine and intervertebral disks. The disks are made of fibrocartilaginous material. The outside of the disk is made of a strong material called the annulus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2010